Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Fish Biol ; 2023 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-37906501

RESUMO

Where orangethroat darters (Etheostoma: Ceasia) and rainbow darters (Etheostoma caeruleum) co-occur, males prefer conspecific over heterospecific females. The cues males use to identify conspecific females remain unclear. We conducted behavioral trials to ask whether chemical cues function in conspecific recognition. We found that males from three orangethroat darter species preferentially associate with female scent over a control. Our results support the use of olfaction in conspecific identification in the orangethroat clade and contribute to our understanding of signals that may facilitate species recognition and underlie the evolution of behavioral isolation.

2.
Mol Ecol ; 32(20): 5626-5644, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37712324

RESUMO

The Astyanax mexicanus complex includes two different morphs, a surface- and a cave-adapted ecotype, found at three mountain ranges in Northeastern Mexico: Sierra de El Abra, Sierra de Guatemala and Sierra de la Colmena (Micos). Since their discovery, multiple studies have attempted to characterize the timing and the number of events that gave rise to the evolution of these cave-adapted ecotypes. Here, using RADseq and genome-wide sequencing, we assessed the phylogenetic relationships, genetic structure and gene flow events between the cave and surface Astyanax mexicanus populations, to estimate the tempo and mode of evolution of the cave-adapted ecotypes. We also evaluated the body shape evolution across different cave lineages using geometric morphometrics to examine the role of phylogenetic signal versus environmental pressures. We found strong evidence of parallel evolution of cave-adapted ecotypes derived from two separate lineages of surface fish and hypothesize that there may be up to four independent invasions of caves from surface fish. Moreover, a strong congruence between the genetic structure and geographic distribution was observed across the cave populations, with the Sierra de Guatemala the region exhibiting most genetic drift among the cave populations analysed. Interestingly, we found no evidence of phylogenetic signal in body shape evolution, but we found support for parallel evolution in body shape across independent cave lineages, with cavefish from the Sierra de El Abra reflecting the most divergent morphology relative to surface and other cavefish populations.

3.
BMC Ecol Evol ; 23(1): 41, 2023 08 25.
Artigo em Inglês | MEDLINE | ID: mdl-37626324

RESUMO

BACKGROUND: The Mexican tetra, Astyanax mexicanus, includes interfertile surface-dwelling and cave-dwelling morphs, enabling powerful studies aimed at uncovering genes involved in the evolution of cave-associated traits. Compared to surface fish, cavefish harbor several extreme traits within their skull, such as a protruding lower jaw, a wider gape, and an increase in tooth number. These features are highly variable between individual cavefish and even across different cavefish populations. RESULTS: To investigate these traits, we created a novel feeding behavior assay wherein bite impressions could be obtained. We determined that fish with an underbite leave larger bite impressions with an increase in the number of tooth marks. Capitalizing on the ability to produce hybrids from surface and cavefish crosses, we investigated genes underlying these segregating orofacial traits by performing Quantitative Trait Loci (QTL) analysis with F2 hybrids. We discovered significant QTL for bite (underbite vs. overbite) that mapped to a single region of the Astyanax genome. Within this genomic region, multiple genes exhibit coding region mutations, some with known roles in bone development. Further, we determined that there is evidence that this genomic region is under natural selection. CONCLUSIONS: This work highlights cavefish as a valuable genetic model for orofacial patterning and will provide insight into the genetic regulators of jaw and tooth development.


Assuntos
Má Oclusão Classe III de Angle , Animais , Peixes , Mapeamento Cromossômico , Crânio , Locos de Características Quantitativas/genética
4.
Nat Commun ; 14(1): 2557, 2023 05 03.
Artigo em Inglês | MEDLINE | ID: mdl-37137902

RESUMO

Laboratory studies have demonstrated that a single phenotype can be produced by many different genotypes; however, in natural systems, it is frequently found that phenotypic convergence is due to parallel genetic changes. This suggests a substantial role for constraint and determinism in evolution and indicates that certain mutations are more likely to contribute to phenotypic evolution. Here we use whole genome resequencing in the Mexican tetra, Astyanax mexicanus, to investigate how selection has shaped the repeated evolution of both trait loss and enhancement across independent cavefish lineages. We show that selection on standing genetic variation and de novo mutations both contribute substantially to repeated adaptation. Our findings provide empirical support for the hypothesis that genes with larger mutational targets are more likely to be the substrate of repeated evolution and indicate that features of the cave environment may impact the rate at which mutations occur.


Assuntos
Characidae , Animais , Characidae/genética , Mutação , Fenótipo , Adaptação Fisiológica/genética , Genótipo , Evolução Biológica , Cavernas
5.
iScience ; 25(2): 103778, 2022 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-35146393

RESUMO

Introgressive hybridization may play an integral role in local adaptation and speciation (Taylor and Larson, 2019). In the Mexican tetra Astyanax mexicanus, cave populations have repeatedly evolved traits including eye loss, sleep loss, and albinism. Of the 30 caves inhabited by A. mexicanus, Chica cave is unique because it contains multiple pools inhabited by putative hybrids between surface and cave populations (Mitchell et al., 1977), providing an opportunity to investigate the impact of hybridization on complex trait evolution. We show that hybridization between cave and surface populations may contribute to localized variation in traits associated with cave evolution, including pigmentation, eye development, and sleep. We also uncover an example of convergent evolution in a circadian clock gene in multiple cavefish lineages and burrowing mammals, suggesting a shared genetic mechanism underlying circadian disruption in subterranean vertebrates. Our results provide insight into the role of hybridization in facilitating phenotypic evolution.

6.
Curr Biol ; 31(16): 3694-3701.e4, 2021 08 23.
Artigo em Inglês | MEDLINE | ID: mdl-34293332

RESUMO

Adaptation to novel environments often involves the evolution of multiple morphological, physiological, and behavioral traits. One striking example of multi-trait evolution is the suite of traits that has evolved repeatedly in cave animals, including regression of eyes, loss of pigmentation, and enhancement of non-visual sensory systems.1,2 The Mexican tetra, Astyanax mexicanus, consists of fish that inhabit at least 30 caves in Mexico and ancestral-like surface fish that inhabit the rivers of Mexico and southern Texas.3 Cave A. mexicanus are interfertile with surface fish and have evolved a number of traits, including reduced pigmentation, eye loss, and alterations to behavior.4-6 To define relationships between different cave-evolved traits, we phenotyped 208 surface-cave F2 hybrid fish for numerous morphological and behavioral traits. We found differences in sleep between pigmented and albino hybrid fish, raising the possibility that these traits share a genetic basis. In cavefish and other species, mutations in oculocutaneous albinism 2 (oca2) cause albinism.7-12 Surface fish with mutations in oca2 displayed both albinism and reduced sleep. Further, this mutation in oca2 fails to complement sleep loss when surface fish harboring this engineered mutation are crossed to independently evolved populations of albino cavefish with naturally occurring mutations in oca2. Analysis of the oca2 locus in wild-caught cave and surface fish suggests that oca2 is under positive selection in 3 cave populations. Taken together, these findings identify oca2 as a novel regulator of sleep and suggest that a pleiotropic function of oca2 underlies the adaptive evolution of albinism and sleep loss.


Assuntos
Albinismo , Characidae , Proteínas de Peixes/genética , Sono , Animais , Evolução Biológica , Characidae/genética , Olho , Pigmentação/genética
7.
J Hered ; 112(4): 357-366, 2021 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-33837393

RESUMO

Sensory systems allow for the transfer of environmental stimuli into internal cues that can alter physiology and behavior. Many studies of visual systems focus on opsins to compare spectral sensitivity among individuals, populations, and species living in different lighting environments. This requires an understanding of the cone opsins, which can be numerous. The bluefin killifish is a good model for studying the interaction between environments and visual systems as they are found in both clear springs and tannin-stained swamps. We conducted a genome-wide screening and demonstrated that the bluefin killifish has 9 cone opsins: 1 SWS1 (354 nm), 2 SWS2 (SWS2B: 359 nm, SWS2A: 448 nm), 2 RH2 (RH2-2: 476 nm, RH2-1: 537 nm), and 4 LWS (LWS-1: 569 nm, LWS-2: 524 nm, LWS-3: 569 nm, LWS-R: 560 or 569 nm). These 9 cone opsins were located on 4 scaffolds. One scaffold contained the 2 SWS2 and 3 of the 4 LWS opsins in the same syntenic order as found in other cyprinodontoid fishes. We also compared opsin expression in larval and adult killifish under clear water conditions, which mimic springs. Two of the newly discovered opsins (LWS-2 and LWS-3) were expressed at low levels (<0.2%). Whether these opsins make meaningful contributions to visual perception in other contexts (i.e., swamp conditions) is unclear. In contrast, there was an ontogenetic change from using LWS-R to LWS-1 opsin. Bluefin killifish adults may be slightly more sensitive to longer wavelengths, which might be related to sexual selection and/or foraging preferences.


Assuntos
Opsinas dos Cones , Proteínas de Peixes , Fundulidae , Animais , Opsinas dos Cones/genética , Proteínas de Peixes/genética , Fundulidae/genética , Filogenia , Opsinas de Bastonetes/genética , Análise de Sequência
8.
Nat Commun ; 12(1): 1447, 2021 03 04.
Artigo em Inglês | MEDLINE | ID: mdl-33664263

RESUMO

Identifying the genetic factors that underlie complex traits is central to understanding the mechanistic underpinnings of evolution. Cave-dwelling Astyanax mexicanus populations are well adapted to subterranean life and many populations appear to have evolved troglomorphic traits independently, while the surface-dwelling populations can be used as a proxy for the ancestral form. Here we present a high-resolution, chromosome-level surface fish genome, enabling the first genome-wide comparison between surface fish and cavefish populations. Using this resource, we performed quantitative trait locus (QTL) mapping analyses and found new candidate genes for eye loss such as dusp26. We used CRISPR gene editing in A. mexicanus to confirm the essential role of a gene within an eye size QTL, rx3, in eye formation. We also generated the first genome-wide evaluation of deletion variability across cavefish populations to gain insight into this potential source of cave adaptation. The surface fish genome reference now provides a more complete resource for comparative, functional and genetic studies of drastic trait differences within a species.


Assuntos
Adaptação Fisiológica/genética , Characidae/embriologia , Characidae/genética , Olho/embriologia , Herança Multifatorial/genética , Animais , Evolução Biológica , Cavernas , Mapeamento Cromossômico , Evolução Molecular , Edição de Genes , Genoma/genética , Proteínas de Homeodomínio/genética , Fosfatases da Proteína Quinase Ativada por Mitógeno/genética , Locos de Características Quantitativas/genética
9.
Mol Ecol Resour ; 21(2): 404-420, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33058399

RESUMO

Researchers studying nonmodel organisms have an increasing number of methods available for generating genomic data. However, the applicability of different methods across species, as well as the effect of reference genome choice on population genomic inference, remain difficult to predict in many cases. We evaluated the impact of data type (whole-genome vs. reduced representation) and reference genome choice on data quality and on population genomic and phylogenomic inference across several species of darters (subfamily Etheostomatinae), a highly diverse radiation of freshwater fish. We generated a high-quality reference genome and developed a hybrid RADseq/sequence capture (Rapture) protocol for the Arkansas darter (Etheostoma cragini). Rapture data from 1,900 individuals spanning four darter species showed recovery of most loci across darter species at high depth and consistent estimates of heterozygosity regardless of reference genome choice. Loci with baits spanning both sides of the restriction enzyme cut site performed especially well across species. For low-coverage whole-genome data, choice of reference genome affected read depth and inferred heterozygosity. For similar amounts of sequence data, Rapture performed better at identifying fine-scale genetic structure compared to whole-genome sequencing. Rapture loci also recovered an accurate phylogeny for the study species and demonstrated high phylogenetic informativeness across the evolutionary history of the genus Etheostoma. Low cost and high cross-species effectiveness regardless of reference genome suggest that Rapture and similar sequence capture methods may be worthwhile choices for studies of diverse species radiations.


Assuntos
Genética Populacional , Genoma , Metagenômica , Perciformes/genética , Animais , Genótipo , Perciformes/classificação , Filogenia , Análise de Sequência de DNA
10.
Mol Biol Evol ; 37(3): 711-729, 2020 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-31688927

RESUMO

Comparative genomic approaches are increasingly being used to study the evolution of reproductive barriers in nonmodel species. Although numerous studies have examined prezygotic isolation in darters (Percidae), investigations into postzygotic barriers have remained rare due to long generation times and a lack of genomic resources. Orangethroat and rainbow darters naturally hybridize and provide a remarkable example of male-driven speciation via character displacement. Backcross hybrids suffer from high mortality, which appears to promote behavioral isolation in sympatry. To investigate the genomic architecture of postzygotic isolation, we used Illumina and PacBio sequencing to generate a chromosome-level, annotated assembly of the orangethroat darter genome and high-density linkage maps for orangethroat and rainbow darters. We also analyzed genome-wide RADseq data from wild-caught adults of both species and laboratory-generated backcrosses to identify genomic regions associated with hybrid incompatibles. Several putative chromosomal translocations and inversions were observed between orangethroat and rainbow darters, suggesting structural rearrangements may underlie postzygotic isolation. We also found evidence of selection against recombinant haplotypes and transmission ratio distortion in backcross hybrid genomes, providing further insight into the genomic architecture of genetic incompatibilities. Notably, regions with high levels of genetic divergence between species were enriched for genes associated with developmental and meiotic processes, providing strong candidates for postzygotic isolating barriers. These findings mark significant contributions to our understanding of the genetic basis of reproductive isolation between species undergoing character displacement. Furthermore, the genomic resources presented here will be instrumental for studying speciation in darters, the most diverse vertebrate group in North America.


Assuntos
Percas/genética , Análise de Sequência de DNA/métodos , Zigoto/crescimento & desenvolvimento , Animais , Inversão Cromossômica , Feminino , Especiação Genética , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Endogamia , Masculino , Percas/embriologia , Simpatria , Translocação Genética
11.
Ecol Evol ; 8(18): 9282-9294, 2018 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-30377500

RESUMO

Behavioral isolation is thought to arise early in speciation due to differential sexual and/or natural selection favoring different preferences and traits in different lineages. Instead, behavioral isolation can arise due to reinforcement favoring traits and preferences that prevent maladaptive hybridization. In darters, female preference for male coloration has been hypothesized to drive speciation, because behavioral isolation evolves before F1 inviability. However, as with many long-lived organisms, the fitness of second-generation hybrids has not been assessed because raising animals to adulthood in the laboratory is challenging. Of late, reinforcement of male preferences has been implicated in darters because male preference for conspecific females is high in sympatry but absent in allopatry in multiple species pairs. The hypothesis that reinforcement accounts for behavioral isolation in sympatry assumes that hybridization and postzygotic isolation are present. Here, we used genomic and morphological data to demonstrate that hybridization is ongoing between orangethroat and rainbow darters and used hybrids collected from nature to measure postzygotic barriers across two hybrid generations. We observed sex ratio distortion in adult F1s and a dramatic reduction in backcross survival. Our findings indicate that selection to avoid hybridization promotes the evolution of male-driven behavioral isolation via reinforcement in this system.

12.
Proc Biol Sci ; 285(1884)2018 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-30068684

RESUMO

Agonistic character displacement (ACD) occurs when selection to avoid maladaptive interspecific aggression leads to the evolution of agonistic signals and/or associated behavioural biases in sympatry. Here, we test for a pattern consistent with ACD in male colour pattern in darters (Percidae: Etheostoma). Male colour pattern has been shown to function in male-male competition rather than female mating preferences in several darter species. Additionally, males bias their aggression towards conspecific over heterospecific males in sympatry but not in allopatry, consistent with divergent ACD in male behavioural biases. We use a common garden approach to show that differences in male colour pattern among four closely related darter species are genetically based. Additionally, we demonstrate that some aspects of male colour pattern exhibit enhanced differences in sympatric compared to allopatric populations of two darter species, consistent with ACD. However, other male colour traits are more similar between species in sympatry compared with allopatry, indicating that not all signal components are under strong divergent selection in sympatry. This study provides evidence that interspecific male-male aggressive interactions alone can promote elaborate male signal evolution both between and within species. We discuss the implications this has for male-driven ACD and cascade ACD.


Assuntos
Comportamento Animal , Cor , Percas/genética , Agressão , Animais , Feminino , Masculino , Percas/anatomia & histologia , Percas/fisiologia , Fenótipo , Especificidade da Espécie , Simpatria
13.
Curr Zool ; 64(1): 101-113, 2018 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-29492043

RESUMO

Selection against hybridization can cause mating traits to diverge between species in sympatry via reproductive character displacement (RCD). Additionally, selection against interspecific fighting can cause aggressive traits to diverge between sympatric species via agonistic character displacement (ACD). By directly affecting conspecific recognition traits, RCD and ACD between species can also incidentally cause divergence in mating and fighting traits among populations within a species [termed cascade RCD (CRCD) and cascade ACD]. Here, we demonstrate patterns consistent with male-driven RCD and ACD in 2 groups of darters (orangethroat darter clade Ceasia and rainbow darter Etheostoma caeruleum). In both groups, males that occur in sympatry (between Ceasia and E. caeruleum) have higher levels of preference for mating and fighting with conspecifics over heterospecifics than do males from allopatry. This is consistent with RCD and ACD. We also found patterns consistent with CRCD and cascade ACD among species of Ceasia. Ceasia males that are sympatric to E. caeruleum (but allopatric to one another) also have heightened preferences for mating and fighting with conspecific versus heterospecific Ceasia. In contrast, Ceasia males that are allopatric to E. caeruleum readily mate and fight with heterospecific Ceasia. We suggest that RCD and ACD between Ceasia and E. caeruleum has incidentally led to divergence in mating and fighting traits among Ceasia species. This study is unique in that male preferences evolve via both RCD (male preference for conspecific females) and ACD (male preference to fight conspecific males) which leads to subsequent divergence among allopatric lineages.

14.
Evolution ; 71(10): 2428-2444, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28776645

RESUMO

Determining which reproductive isolating barriers arise first between geographically isolated lineages is critical to understanding allopatric speciation. We examined behavioral isolation among four recently diverged allopatric species in the orangethroat darter clade (Etheostoma: Ceasia). We also examined behavioral isolation between each Ceasia species and the sympatric rainbow darter Etheostoma caeruleum. We asked (1) is behavioral isolation present between allopatric Ceasia species, and how does this compare to behavioral isolation with E. caeruleum, (2) does male color distance and/or genetic distance predict behavioral isolation between species, and (3) what are the relative contributions of female choice, male choice, and male competition to behavioral isolation? We found that behavioral isolation, genetic differentiation, and male color pattern differentiation were present between allopatric Ceasia species. Males, but not females, discerned between conspecific and heterospecific mates. Males also directed more aggression toward conspecific rival males. The high levels of behavioral isolation among Ceasia species showed no obvious pattern with genetic distance or male color distance. However, when the E. caeruleum was included in the analysis, an association between male aggression and male color distance was apparent. We discuss the possibility that reinforcement between Ceasia and E. caeruleum is driving behavioral isolation among allopatric Ceasia species.


Assuntos
Comportamento Animal , Evolução Molecular , Perciformes/genética , Isolamento Reprodutivo , Pigmentação da Pele/genética , Animais , Feminino , Masculino , Perciformes/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA